miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal
نویسندگان
چکیده
Glioblastoma multiforme (GBM) is the most common and fatal malignant adult primary brain tumor. Currently, the overall prognosis for GBM patients remains poor despite advances in neurosurgery and adjuvant treatments. MicroRNAs (miRNAs) contribute to the pathogenesis of various types of tumor, including GBM. In this study we analyzed the expression of a panel of miRNAs, which are known to be differentially expressed by the brain and GBM tumor, in a collection of patient-derived GBM stem-like cells (GSCs). Notably, the average expression level of miR-135b, was the most downregulated compared to its normal counterpart, suggesting a potential role as anti-oncogene.Restoration of miR-135b in GSCs significantly decreased proliferation, migration and clonogenic abilities. More importantly, miR-135b restoration was able to significantly reduce brain infiltration in mouse models of GBM obtained by intracerebral injection of GSC lines. We identified ADAM12 and confirmed SMAD5 and GSK3β as miR-135b targets and potential mediators of its effects. The whole transcriptome analysis ascertained that the expression of miR-135b downmodulated additional genes driving key pathways in GBM survival and infiltration capabilities.Our results identify a critical role of miR-135b in the regulation of GBM development, suggesting that miR-135b might act as a tumor-suppressor factor and thus providing a potential candidate for the treatment of GBM patients.
منابع مشابه
MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9
Glioblastoma multiforme (GBM) is the most common primary malignant tumors originating in the brain parenchyma. At present, GBM patients have a poor prognosis despite the continuous progress in therapeutic technologies including surgery, radiotherapy, photodynamic therapy, and chemotherapy. Recent studies revealed that miR-101 was remarkably down-regulated in kinds of human cancers and was assoc...
متن کاملm6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells
RNA modifications play critical roles in important biological processes. However, the functions of N6-methyladenosine (m6A) mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m6A mRNA modification is critical for glioblastoma stem cell (GSC) self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransfera...
متن کاملTargeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal.
MicroRNAs (miR) show characteristic expression signatures in various cancers and can profoundly affect cancer cell behavior. We carried out miR expression profiling of human glioblastoma specimens versus adjacent brain devoid of tumor. This revealed several significant alterations, including a pronounced reduction of miR-128 in tumor samples. miR-128 expression significantly reduced glioma cell...
متن کاملSelf-Renewal by MicroRNA-128 Inhibits Glioma Proliferation and Targeting of the Bmi-1 Oncogene/Stem Cell Renewal Factor
MicroRNAs (miR) show characteristic expression signatures in various cancers and can profoundly affect cancer cell behavior. We carried out miR expression profiling of human glioblastoma specimens versus adjacent brain devoid of tumor. This revealed several significant alterations, including a pronounced reduction of miR-128 in tumor samples. miR-128 expression significantly reduced glioma cell...
متن کاملmiR-34a is downregulated in human osteosarcoma stem-like cells and promotes invasion, tumorigenic ability and self-renewal capacity
MicroRNA-34 (miR-34), in particular miR-34a, has a negative regulatory effect on osteosarcoma cell proliferation, migration and invasion. Notably, it is also a post‑transcriptional regulatory factor of (sex determining region Y)‑box 2 (Sox-2), which is required for osteosarcoma cell self‑renewal and tumorigenesis. As a direct regulator of Sox‑2, miR‑34a has been hypothesized to be greatly assoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015